Home Blog

The predictive power of real government bond yields

Real government bond yields are indicators of standard market risk premia and implicit subsidies. They can be estimated by subtracting an estimate of inflation expectations from standard yields. And for credible monetary policy regimes, inflation expectations can be estimated based on concurrent information on recent CPI trends and the future inflation target. For a data panel of developed markets since 2000, real yields have displayed strong predictive power for subsequent monthly and quarterly government bond returns. Simple real yield-based strategies have added material economic value in 2000-2023 by guiding both intertemporal and cross-country risk allocation.

Equity versus fixed income: the predictive power of bank surveys

Jupyter Notebook

Bank lending surveys help predict the relative performance of equity and duration positions. Signals of strengthening credit demand and easing lending conditions favor a stronger economy and expanding leverage, benefiting equity positions. Signs of deteriorating credit demand and tightening credit supply bode for a weaker economy and more accommodative monetary policy, benefiting long-duration positions. Empirical evidence for developed markets strongly supports these propositions. Since 2000, bank survey scores have been a significant predictor of equity versus duration returns. They helped create uncorrelated returns in both asset classes, as well as for a relative asset class book.

Business sentiment and commodity future returns

Business sentiment is a key driver of inventory dynamics in global industry and, therefore, a powerful indicator of aggregate demand for industrial commodities. Changes in manufacturing business confidence can be aggregated by industry size across all major economies to give a powerful directional signal of global demand for metals and energy. An empirical analysis based on information states of sentiment changes and subsequent commodity futures returns shows a clear and highly significant predictive relation. Various versions of trading signals based on short-term survey changes all produce significant long-term alpha. The predictive relation and value generation apply to all liquid commodity futures contracts.

Nowcasting macro trends with machine learning

Nowcasting economic trends can make use of a broad range of machine learning methods. This not only serves the purpose of optimization but also allows replication of past information states of the market and supports realistic backtesting. A practical framework for modern nowcasting is the three-step approach of (1) variable pre-selection, (2) orthogonalized factor formation, and (3) regression-based prediction. Various methods can be applied at each step, in accordance with the nature of the task. For example, pre-selection can be based on sure independence screening, t-stat-based selection, least-angle regression, or Bayesian moving averaging. Predictive models include many non-linear models, such as Markov switching models, quantile regression, random forests, gradient boosting, macroeconomic random forests, and linear gradient boosting. There is some evidence that linear regression-based methods outperform random forests in the field of macroeconomics.

Pure macro FX strategies: the benefits of double diversification

Jupyter Notebook

Pure macro(economic) strategies are trading rules that are informed by macroeconomic indicators alone. They are rarer and require greater analytical resources than standard price-based strategies. However, they are also more suitable for pure alpha generation. This post investigates a pure macro strategy for FX forward trading across developed and emerging countries based on an “external strength score” considering economic growth, external balances, and terms-of-trade.

Rather than optimizing, we build trading signals based on the principles of “risk parity” and “double diversification.” Risk parity means that allocation is adjusted for the volatility of signals and returns. Double diversification means risk is spread over different currency areas and conceptual macro factors. Risk parity across currency signals diminishes vulnerability to idiosyncratic country risk. Risk parity across macroeconomic concepts mitigates the effects of the seasonality of macro influences. Based on these principles, the simplest pure macro FX strategy would have produced a long-term Sharpe ratio of around 0.8 before transaction costs with no correlation to equity, fixed income, and FX benchmarks.

A model for bond risk premia and the macroeconomy

An empirical analysis of the U.S. bond market since the 1960s emphasizes occasional abrupt regime changes, as defined by yield levels, curve slopes, and related volatility metrics. An arbitrage-free bond pricing model illustrates that bond risk premia can be decomposed into two types. One is related to continuous risk factors, traditionally summarized as the level, slope, and curvature of the yield term structure. The other type is related to regime-switching risk. Accounting for regime shift risk adds significant explanatory power to the model. Moreover, risk premia associated with regime shifts are related to the macroeconomic environment, particularly inflation and economic activity. The market price of regime shifts is strongly pro-cyclical and largely explained by these economic indicators. Investors apply a higher regime-related discount to bond values when the economy is booming.

Equity trend following and macro headwinds


Jupyter Notebook

Market price trends often foster economic trends that eventually oppose them. Theory and empirical evidence support this phenomenon for equity markets and suggest that macro headwind (or tailwind) indicators are powerful modifiers of trend following strategies. As a simple example, we calculate a macro support factor for equity index futures in the eight largest developed markets based on labor markets, inflation, and equity carry. This factor is used to modify standard trend following signals. The modification increases the predictive power of the trend signal and roughly doubles the risk-adjusted return of a stylized global trend following strategy since 2000.

Merchandise import as predictor of duration returns

Jupyter Notebook

Local-currency import growth is a widely underestimated and important indicator of trends in fixed-income markets. Its predictive power reflects its alignment with economic trends that matter for monetary policy: domestic demand, inflation, and effective currency dynamics. Empirical evidence confirms that import growth has significantly predicted outright duration returns, curve position returns, and cross-currency relative duration returns over the past 22 years. A composite import score would have added considerable economic value to a duration portfolio through timing directional exposure, positioning along the curve, and cross-country allocations.

Finding (latent) trading factors

Financial markets are looking at a growing and broadening range of correlated time series for the operation of trading strategies. This increases the importance of latent factor models, i.e., methods that condense high-dimensional datasets into a low-dimensional group of factors that retain most of their underlying relevant information. There are two principal approaches to finding such factors. The first uses domain knowledge to pick factor proxies up front. The second treats all factors as latent and applies statistical methods, such as principal components, to a comprehensive set of correlated variables. A new paper proposes to combine domain knowledge and statistical methods using penalized reduced-rank regression. The approach promises improved accuracy and robustness.

FX trend following and macro headwinds

Jupyter Notebook

Trend following can benefit from consideration of macro trends. One reason is that macroeconomic data indicate headwinds (or tailwinds) for the continuation of market price trends. This is particularly obvious in the foreign-exchange space. For example, the positive return trend of a currency is less likely to be sustained if concurrent economic data signal a deterioration in the competitiveness of the local economy. Macro indicators of such setback risk can slip through the net of statistical detection of return predictors because their effects compete with dominant trends and are often non-linear and concentrated. As a simple example, empirical evidence shows that standard global FX trend following would have benefited significantly merely from adjusting for changes in external balances.